박호건 교수 연구실 (LearnData Lab)의 그래프 신경망 연구 WSDM 2025 논문 게재 승인 (석사졸업: 박종원, 박사과정: 정희수)
- 인공지능학과
- 조회수688
- 2024-12-02
박호건 교수 연구실 (LearnData Lab)의 그래프 신경망 연구 WSDM 2025 논문 게재 승인 (석사졸업: 박종원, 박사과정: 정희수)
LearnData연구실 (지도교수: 박호건)의 논문이 인공지능 분야 최우수학회인 The 18th ACM International Conference on Web Search and Data Mining에 게재 승인(Accept) 되었습니다.
1. 논문 “CIMAGE: Exploiting the Conditional Independence in Masked Graph Auto-
encoders” 은 인공지능학과 박종원 (석사졸업생)이 제1저자로 게재하였으며, 소프트웨어학과 정희수 (박사과정)이 공동 1저자로 참여했습니다.
성균관대학교의 박호건 교수 연구진은 자기 지도 학습(Self-Supervised Learning)을 기반으로 하는 그래프 신경망(GNN) 학습 기술 연구에서 높은 수준의 성과를 달성했습니다. 이번 연구는 CIMAGE (Conditional Independence Aware Masked Graph Auto-Encoder) 라는 모델을 개발하여, 기존의 무작위 마스킹 방식이 가진 한계를 극복하고 그래프 신경망의 표현력을 한층 더 강화하였습니다.
CIMAGE 모델은 조건부 독립성(Conditional Independence)을 활용해 마스킹 전략을 설계하며, 이를 통해 그래프 표현 학습의 효율성과 정확도를 크게 높였습니다. 특히, 이번 연구에서는 높은 신뢰도의 가짜 레이블을 사용하여 두 가지 독립된 맥락을 생성하고, 이를 통해 마스킹과 재구성 작업을 수행하는 새로운 사전 학습(pretext task) 방법을 제안하였습니다. CIMAGE의 성능은 다양한 그래프 벤치마크 데이터셋에서 우수함을 입증했으며, 노드 분류 및 링크 예측과 같은 다운스트림 작업에서 높은 정확도를 기록하며, 그래프 표현 학습 분야의 새로운 기준을 제시하고 있습니다.
이 연구는 성균관대학교의 혁신적이고 선도적인 연구 방향을 보여주는 중요한 성과로, 그래프 신경망 연구 및 자율 학습 분야에서 널리 활용될 가능성이 높습니다.
LearnData 연구실은 그래프, 자연어, 센서, 이미지 등 다양한 모달리티를 활용한 기계학습 및 데이터마이닝 기술 개발, 설명 가능 AI 기술 연구 등을 수행하고 있습니다. 이번 WDSM 2025 논문의 연구는 인공지능대학원, 정보통신기획평가원, 한국콘텐츠진흥원 등의 지원으로 진행되었습니다.
박호건 | hogunpark@skku.edu | LearnData Lab | https://learndatalab.github.io/